| Checkout
Menu
4 ml Polyethylene Replacement Vials, Lined Caps
4 ml Polyethylene Replacement Vials, Lined Caps

4 ml Polyethylene Vials with Lined Polypropylene Screw Caps

$186.00
SKU: PERV 04-240-12

For labs using solvents incompatible with polycarbonate, our 4 ml Polyethylene Vials with Lined Polypropylene Screw Caps are a practiced alternative.  Resistant to many solvents that melt polycarbonate, cost-effective Polyethylene Vials are suitable for high throughput homogenization of most small seeds and animal tissue.  Polyethylene-Lined Polypropylene Screw Caps are recommended when wet grinding with buffers or solvents.

NOTE:  Polyethylene Vials are relatively pliable compared to Polycarbonate Vials and are not as effective when used on large, hard samples (e.g., corn kernels).  Polycarbonate Vials are preferred for cryogenic grinding.

Each 4 ml Polyethylene Vial has a working volume of 4 ml and is suitable for homogenizing up to 200 mg of sample.  Recommended for use with 3/8” Stainless Steel Grinding Balls and 5/16” Stainless Steel Grinding Balls (not included).

Sold in cases of two hundred forty (240) 4 ml Polyethylene Vials with Lined Polypropylene Screw Caps.

For more specific information regarding sample processing, please consult the Selection of Grinding Vials for Sample Processing and Bead Beating: A Primer.

Not sure where to start? Check out our application table.

Related Products

24 Well Polyethylene Vial Sets with Lined Caps (case)

3/8” Stainless Steel Grinding Balls

5/16” Stainless Steel Grinding Balls

Citations

Codina, A.; Renauer, P. A.; Wang, G.; Chow, R. D.; Park, J. J.; Ye, H.; Zhang, K.; Dong, M. B.; Gassaway, B.; Ye, L.; et al. Convergent Identification and Interrogation of Tumor-Intrinsic Factors That Modulate Cancer Immunity In Vivo. Cell Systems 2019, 8 (2), 136-151.e7. https://doi.org/10.1016/j.cels.2019.01.004.

Wang, G.; Chow, R. D.; Ye, L.; Guzman, C. D.; Dai, X.; Dong, M. B.; Zhang, F.; Sharp, P. A.; Platt, R. J.; Chen, S. Mapping a Functional Cancer Genome Atlas of Tumor Suppressors in Mouse Liver Using AAV-CRISPR–Mediated Direct in Vivo Screening. Science Advances 2018, 4 (2), eaao5508. https://doi.org/10.1126/sciadv.aao5508.

Wang, G.; Chow, R. D.; Ye, L.; Guzman, C. D.; Dai, X.; Dong, M. B.; Zhang, F.; Sharp, P. A.; Platt, R. J.; Chen, S. Pooled AAV-CRISPR Screen with Targeted Amplicon Sequencing. bioRxiv 2017, 153643. https://doi.org/10.1101/153643.

Chow, R. D.; Guzman, C. D.; Wang, G.; Schmidt, F.; Youngblood, M. W.; Ye, L.; Errami, Y.; Dong, M. B.; Martinez, M. A.; Zhang, S.; et al. Direct in Vivo Mapping of Functional Suppressors in Glioblastoma Genome. bioRxiv 2017, 153460. https://doi.org/10.1101/153460.

Chow, R. D.; Guzman, C. D.; Wang, G.; Schmidt, F.; Youngblood, M. W.; Ye, L.; Errami, Y.; Dong, M. B.; Martinez, M. A.; Zhang, S.; et al. AAV-Mediated Direct in Vivo CRISPR Screen Identifies Functional Suppressors in Glioblastoma. PMC 2017.

Chen, S.; Sanjana, N. E.; Zheng, K.; Shalem, O.; Lee, K.; Shi, X.; Scott, D. A.; Song, J.; Pan, J. Q.; Weissleder, R.; et al. Genome-Wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell 2015, 160 (6), 1246–1260. https://doi.org/10.1016/j.cell.2015.02.038.