800 micron Silica Beads, Pre-Filled Tubes (100 count)

800 micron Silica Beads, Pre-Filled Tubes
 
 
Back to List
$159.00 - $202.00
Qty:
Bead Treatment:

Less expensive than zirconium, 800 µm Silica Beads are ideal for homogenizing small insects, such as mosquitoes. They are dense enough to break the exoskeleton of the insects, allowing for extractions and isolations of proteins and nucleic acids.  Also suitable for lysing mold and pollen.

Silica beads are available in Acid Washed, Low Binding, and and Molecular Biology Grade format.  Since untreated beads are notorious for containing large amounts of debris and dust, all beads are acid washed to remove organic impurities.   

Low Binding Beads are chemically altered using a proprietary process to bind less biomolecules liberated from homogenized samples.  

Molecular Biology Grade Beads are certified nucleic acid, DNase, RNase, and protease-free.  They are most appropriate for molecular biology applications, including PCR, which may be hindered by the presence of nucleases and /or proteases.

Pre-Filled Tubes are a convenient solution for labs seeking time savings by no longer requiring researchers to weigh, fill and QC individual tubes.   They are available in 2 mL skirted (i.e., self-standing) or unskirted (i.e., conical bottom) polypropylene tubes to ensure compatibility with most tube homogenizers. Clear screw caps with O-rings included.

Citations

Manne, S.; Kondru, N.; Jin, H.; Anantharam, V.; Huang, X.; Kanthasamy, A.; Kanthasamy, A. G. α-Synuclein Real-Time Quaking-Induced Conversion in the Submandibular Glands of Parkinson’s Disease Patients. Movement Disorders 2020, 35 (2), 268–278. https://doi.org/10.1002/mds.27907.

Saijo, E.; Metrick, M. A.; Koga, S.; Parchi, P.; Litvan, I.; Spina, S.; Boxer, A.; Rojas, J. C.; Galasko, D.; Kraus, A.; et al. 4-Repeat Tau Seeds and Templating Subtypes as Brain and CSF Biomarkers of Frontotemporal Lobar Degeneration. Acta Neuropathol 2020, 139 (1), 63–77. https://doi.org/10.1007/s00401-019-02080-2.

Manne, S.; Kondru, N.; Hepker, M.; Jin, H.; Anantharam, V.; Lewis, M.; Huang, X.; Kanthasamy, A.; Kanthasamy, A. G. Ultrasensitive Detection of Aggregated α-Synuclein in Glial Cells, Human Cerebrospinal Fluid, and Brain Tissue Using the RT-QuIC Assay: New High-Throughput Neuroimmune Biomarker Assay for Parkinsonian Disorders. J Neuroimmune Pharmacol 2019. https://doi.org/10.1007/s11481-019-09835-4.

Kraus, A.; Saijo, E.; Metrick, M. A.; Newell, K.; Sigurdson, C. J.; Zanusso, G.; Ghetti, B.; Caughey, B. Seeding Selectivity and Ultrasensitive Detection of Tau Aggregate Conformers of Alzheimer Disease. Acta Neuropathol 2019, 137 (4), 585–598. https://doi.org/10.1007/s00401-018-1947-3.

Benmoussa, A.; Diallo, I.; Salem, M.; Michel, S.; Gilbert, C.; Sévigny, J.; Provost, P. Concentrates of Two Subsets of Extracellular Vesicles from Cow’s Milk Modulate Symptoms and Inflammation in Experimental Colitis. Sci Rep 2019, 9 (1), 1–16. https://doi.org/10.1038/s41598-019-51092-1.

Kosa, G.; Vuoristo, K. S.; Horn, S. J.; Zimmermann, B.; Afseth, N. K.; Kohler, A.; Shapaval, V. Assessment of the Scalability of a Microtiter Plate System for Screening of Oleaginous Microorganisms. Appl Microbiol Biotechnol 2018, 102 (11), 4915–4925. https://doi.org/10.1007/s00253-018-8920-x.

Johnson, E. T.; Dowd, P. F. A Quantitative Method for Determining Relative Colonization Rates of Maize Callus by Fusarium Graminearum for Resistance Gene Evaluations. Journal of Microbiological Methods 2016, 130, 73–75. https://doi.org/10.1016/j.mimet.2016.08.026.

Park, S. H.; Nguyen, T. N.; Günzl, A. Development of an Efficient in Vitro Transcription System for Bloodstream Form Trypanosoma Brucei Reveals Life Cycle-Independent Functionality of Class I Transcription Factor A. Molecular and Biochemical Parasitology 2012, 181 (1), 29–36. https://doi.org/10.1016/j.molbiopara.2011.09.009.

Bell, A. S.; Huijben, S.; Paaijmans, K. P.; Sim, D. G.; Chan, B. H. K.; Nelson, W. A.; Read, A. F. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes Following Drug Treatment in Rodent Malaria. PLOS ONE 2012, 7 (6), e37172. https://doi.org/10.1371/journal.pone.0037172.

Gonzalez-Montalban, N.; Makarava, N.; Ostapchenko, V. G.; Savtchenk, R.; Alexeeva, I.; Rohwer, R. G.; Baskakov, I. V. Highly Efficient Protein Misfolding Cyclic Amplification. PLOS Pathogens 2011, 7 (2), e1001277. https://doi.org/10.1371/journal.ppat.1001277.

Farrell, S.; Halsall, H. B.; Heineman, W. R. Bacillus Globigii Bugbeads:  A Model Simulant of a Bacterial Spore. Anal. Chem. 2005, 77 (2), 549–555. https://doi.org/10.1021/ac049156y.

800 micron Silica Beads in a disruption tube

Less expensive than zirconium, 800 µm Silica Beads are ideal for homogenizing small insects, such as mosquitoes. They are dense enough to break the exoskeleton of the insects, allowing for extractions and isolations of proteins and nucleic acids.  Also suitable for lysing mold and pollen.

Silica beads are available in Acid Washed, Low Binding, and and Molecular Biology Grade format.  Since untreated beads are notorious for containing large amounts of debris and dust, all beads are acid washed to remove organic impurities.   

Low Binding Beads are chemically altered using a proprietary process to bind less biomolecules liberated from homogenized samples.  

Molecular Biology Grade Beads are certified nucleic acid, DNase, RNase, and protease-free.  They are most appropriate for molecular biology applications, including PCR, which may be hindered by the presence of nucleases and /or proteases.

Pre-Filled Tubes are a convenient solution for labs seeking time savings by no longer requiring researchers to weigh, fill and QC individual tubes.   They are available in 2 mL skirted (i.e., self-standing) or unskirted (i.e., conical bottom) polypropylene tubes to ensure compatibility with most tube homogenizers. Clear screw caps with O-rings included.

Citations

Manne, S.; Kondru, N.; Jin, H.; Anantharam, V.; Huang, X.; Kanthasamy, A.; Kanthasamy, A. G. α-Synuclein Real-Time Quaking-Induced Conversion in the Submandibular Glands of Parkinson’s Disease Patients. Movement Disorders 2020, 35 (2), 268–278. https://doi.org/10.1002/mds.27907.

Saijo, E.; Metrick, M. A.; Koga, S.; Parchi, P.; Litvan, I.; Spina, S.; Boxer, A.; Rojas, J. C.; Galasko, D.; Kraus, A.; et al. 4-Repeat Tau Seeds and Templating Subtypes as Brain and CSF Biomarkers of Frontotemporal Lobar Degeneration. Acta Neuropathol 2020, 139 (1), 63–77. https://doi.org/10.1007/s00401-019-02080-2.

Manne, S.; Kondru, N.; Hepker, M.; Jin, H.; Anantharam, V.; Lewis, M.; Huang, X.; Kanthasamy, A.; Kanthasamy, A. G. Ultrasensitive Detection of Aggregated α-Synuclein in Glial Cells, Human Cerebrospinal Fluid, and Brain Tissue Using the RT-QuIC Assay: New High-Throughput Neuroimmune Biomarker Assay for Parkinsonian Disorders. J Neuroimmune Pharmacol 2019. https://doi.org/10.1007/s11481-019-09835-4.

Kraus, A.; Saijo, E.; Metrick, M. A.; Newell, K.; Sigurdson, C. J.; Zanusso, G.; Ghetti, B.; Caughey, B. Seeding Selectivity and Ultrasensitive Detection of Tau Aggregate Conformers of Alzheimer Disease. Acta Neuropathol 2019, 137 (4), 585–598. https://doi.org/10.1007/s00401-018-1947-3.

Benmoussa, A.; Diallo, I.; Salem, M.; Michel, S.; Gilbert, C.; Sévigny, J.; Provost, P. Concentrates of Two Subsets of Extracellular Vesicles from Cow’s Milk Modulate Symptoms and Inflammation in Experimental Colitis. Sci Rep 2019, 9 (1), 1–16. https://doi.org/10.1038/s41598-019-51092-1.

Kosa, G.; Vuoristo, K. S.; Horn, S. J.; Zimmermann, B.; Afseth, N. K.; Kohler, A.; Shapaval, V. Assessment of the Scalability of a Microtiter Plate System for Screening of Oleaginous Microorganisms. Appl Microbiol Biotechnol 2018, 102 (11), 4915–4925. https://doi.org/10.1007/s00253-018-8920-x.

Johnson, E. T.; Dowd, P. F. A Quantitative Method for Determining Relative Colonization Rates of Maize Callus by Fusarium Graminearum for Resistance Gene Evaluations. Journal of Microbiological Methods 2016, 130, 73–75. https://doi.org/10.1016/j.mimet.2016.08.026.

Park, S. H.; Nguyen, T. N.; Günzl, A. Development of an Efficient in Vitro Transcription System for Bloodstream Form Trypanosoma Brucei Reveals Life Cycle-Independent Functionality of Class I Transcription Factor A. Molecular and Biochemical Parasitology 2012, 181 (1), 29–36. https://doi.org/10.1016/j.molbiopara.2011.09.009.

Bell, A. S.; Huijben, S.; Paaijmans, K. P.; Sim, D. G.; Chan, B. H. K.; Nelson, W. A.; Read, A. F. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes Following Drug Treatment in Rodent Malaria. PLOS ONE 2012, 7 (6), e37172. https://doi.org/10.1371/journal.pone.0037172.

Gonzalez-Montalban, N.; Makarava, N.; Ostapchenko, V. G.; Savtchenk, R.; Alexeeva, I.; Rohwer, R. G.; Baskakov, I. V. Highly Efficient Protein Misfolding Cyclic Amplification. PLOS Pathogens 2011, 7 (2), e1001277. https://doi.org/10.1371/journal.ppat.1001277.

Farrell, S.; Halsall, H. B.; Heineman, W. R. Bacillus Globigii Bugbeads:  A Model Simulant of a Bacterial Spore. Anal. Chem. 2005, 77 (2), 549–555. https://doi.org/10.1021/ac049156y.

 

Products

Information