| Checkout

Geno/Grinder® 2010, 115V

Contact Us for Pricing
SKU: SP 2010-115

*Available to U.S. Customers Only

The Geno/Grinder® 2010 is the most versatile high throughput homogenizer available today.

  • Automated mechanical disruption through bead beating, ideal for high-throughput homogenization.
  • Programmable touch screen control panel for run time, rate, cycles and pause time.  Up to 500 protocols can be saved for recall.
  • Linear shaking of deep-well titer plates, vial sets, and centrifuge tubes in a vertical motion for consistent processing.
  • Adjustable clamp allows users to secure a full range of sample vials from 2mL (x96), 4mL (x96), 15 mL (x20) to 50mL (x10) self-standing vials, or up to six deep-well titer plates (*optional stacking tray required).  Also accommodates conical bottom centrifuge tubes.
  • Typical sample processing time of 1-2 minutes.
  • Optional Cryo-Blocks enable cryogenic grinding and preserve temperature sensitive samples for RNA and protein extractions. For more information, see  Geno/Grinder® 2010 Accessories.
  • Can be used for a wide variety of sample types, including cell cultures, cannabis, yeast, bacteria, fungi, animal tissue, plants, seeds, biofuels, etc.


Clamp Movement

1.25in (3.2cm) vertical

Clamp Speed

Adjustable from 500-1750 strokes/minute


Digital display in Minutes:Seconds (max 20:00)

USB port

Run history is recorded and can be exported



CE Approved



14.00 in (35.6 cm) wide x 22.5 in. (57.2 cm) deep x 28 in. (71.1 cm) high

Net Weight

106 lbs (48 kg)


1/3 hp

Power Cord

3-prong grounded plug, 115V / 60Hz


Unsure of which pre-filled tubes to use with your samples? Follow the link to see our comparison of pre-filled disruption tubes.


Leopold, D. R.; Busby, P. E. Joint Effects of Host Genotype and Species Arrival Order Govern Microbiome Composition and Function. bioRxiv 2020, 2020.02.28.970582. https://doi.org/10.1101/2020.02.28.970582.

de Kerdrel, G. A.; Andersen, J. C.; Kennedy, S. R.; Gillespie, R.; Krehenwinkel, H. Rapid and Cost-Effective Generation of Single Specimen Multilocus Barcoding Data from Whole Arthropod Communities by Multiple Levels of Multiplexing. Scientific Reports 2020, 10 (1), 1–12. https://doi.org/10.1038/s41598-019-54927-z.

Roth, M. G.; Oudman, K. A.; Griffin, A.; Jacobs, J. L.; Sang, H.; Chilvers, M. I. Diagnostic QPCR Assay to Detect Fusarium Brasiliense, a Causal Agent of Soybean Sudden Death Syndrome and Root Rot of Dry Bean. Plant Disease 2019, 104 (1), 246–254. https://doi.org/10.1094/PDIS-01-19-0016-RE.

Laraba, I.; Keddad, A.; Boureghda, H.; Abdallah, N.; Vaughan, M. M.; Proctor, R. H.; Busman, M.; O’Donnell, K. Fusarium Algeriense, Sp. Nov., a Novel Toxigenic Crown Rot Pathogen of Durum Wheat from Algeria Is Nested in the Fusarium Burgessii Species Complex. Mycologia 2017, 109 (6), 935–950. https://doi.org/10.1080/00275514.2018.1425067.

Krehenwinkel, H.; Wolf, M.; Lim, J. Y.; Rominger, A. J.; Simison, W. B.; Gillespie, R. G. Estimating and Mitigating Amplification Bias in Qualitative and Quantitative Arthropod Metabarcoding. Scientific Reports 2017, 7 (1), 17668. https://doi.org/10.1038/s41598-017-17333-x.

Hung, C.-S.; Li, H.-Y.; Kuo, C.-H.; Lin, M.-S.; Kuo, T.-C.; Tsai, S.-J.; Liu, P.-H.; Lin, C.-H.; Yang, C.-Y.; Chuang, L.-M.; et al. Fasting but Not Changes of Plasma Metabolome during Oral Glucose Tolerance Tests Improves the Diagnosis of Severe Coronary Arterial Stenosis. Clinical Endocrinology 2015, 83 (4), 483–489. https://doi.org/10.1111/cen.12713.

Wu, C. A.; Murray, L. A.; Heffernan, K. E. Evidence for Natural Hybridization between Native and Introduced Lineages of Phragmites Australis in the Chesapeake Bay Watershed. American Journal of Botany 2015, 102 (5), 805–812. https://doi.org/10.3732/ajb.1500018.

Khadilkar, A. S.; Yadav, U. P.; Salazar, C.; Shulaev, V.; Paez-Valencia, J.; Pizzio, G. A.; Gaxiola, R. A.; Ayre, B. G. Constitutive and Companion Cell-Specific Overexpression of AVP1, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport. Plant Physiology 2016, 170 (1), 401–414. https://doi.org/10.1104/pp.15.01409.